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Abstract
It is demonstrated that non-local Cooper pairs can propagate in ferromagnetic
electrodes with opposite spin orientations. In the presence of such cross-
correlations, the superconducting gap is found to depend explicitly on the
relative orientation of the ferromagnetic electrodes. Non-local Cooper pairs
can in principle be probed by means of direct-current (dc) transport. For two
ferromagnetic electrodes, we propose a ‘quantum switch’ that can be used to
detect correlated pairs of electrons. For three or more ferromagnetic electrodes,
the Cooper pair-like state is a linear superposition of Cooper pairs which
could be detected in the dc transport. The effect also induces an enhancement
of the ferromagnetic proximity effect on the basis of superconducting cross-
correlations propagating along domain walls.

Ferromagnetism and superconductivity are antagonist correlated states of matter. In ferro-
magnetism, one spin population is favoured because of spin symmetry breaking, while in s-
wave superconductivity, electrons with the opposite spin are bound into Cooper pairs because
of the attractive electron–electron interaction. Determination of to what extent these two
orders can coexist in the same system has been a long-standing problem. As first proposed
40 years ago by Anderson and Suhl, the coexistence is possible if the ferromagnet acquires
a cryptomagnetic [1] or cryptomagnetic-like [2] domain structure. On the other hand, in
superconductor/ferromagnet heterostructures, a Cooper pair penetrating into a single-domain
ferromagnet acquires a finite kinetic energy due to the coupling to the exchange field. This
results in a spatial oscillation of the induced superconducting order parameter [3–6], giving
rise to the so-called π -state, which has been probed recently in two experiments [7, 8]. In
this letter, we consider Cooper pair penetration in a multi-domain ferromagnet. It has already
been shown theoretically that crossed Andreev reflections can arise in a heterostructure in
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which two ferromagnets with opposite spin orientations are connected to a superconductor
[9]. Such Andreev reflections do not exist when a single-domain ferromagnet is in contact
with a superconductor [10–12]. We demonstrate here that quasi-long-range superconducting
correlations can propagate in two magnetic domains with opposite magnetizations. These
correlations correspond to non-local Cooper pair-like objects in which the spin-up (spin-down)
electron propagates in a spin-up (spin-down) ferromagnetic domain.

This implies several consequences that may be tested in future experiments. First,
considering the problem from the point of view of a superconductor order parameter coupled
to a ferromagnetic environment, we show that the transition temperature of the superconductor
depends explicitly on the relative spin orientations of the electrodes. The superconducting gap
is smaller when the electrodes are misoriented.

The second implication of the model is that ferromagnetic domain walls can propagate
superconducting cross-correlations, in which the two electrons making up a Cooper pair reside
in neighbouring magnetic domains. This may explain the enhancement of the proximity effect
observed in ferromagnet/superconductor heterostructures [13–16].

The third implication of the model is related to the production and measurement of linear
superpositions of non-local Cooper pairs. It was stressed by Einstein, Podolsky and Rosen in
1935 [17] that non-locality is a deep feature of quantum mechanics. Non-locality [18] has been
probed experimentally with photons [19,20]. Condensed matter systems will perhaps provide
the opportunity to fabricate entangled states with electrons, which are massive particles, and
to fabricate quantum bits, which could be the building blocks of a quantum computer [21–24].
Two proposals have been made recently: one is based on tunnelling in a double quantum
dot [25] and the other is based on noise correlations of Cooper pairs emitted in a beam
splitter [26]. We show that superconducting cross-correlations in ferromagnets provide the
possibility of manipulating linear superpositions of Cooper pairs. For two ferromagnetic
electrodes, we propose a ‘quantum switch’ device that can be used to detect correlated pairs of
electrons. Linear superpositions can be obtained with three or more ferromagnetic electrodes,
and can be probed by means of dc transport.

Let us now consider a microscopic model in which a superconductor is connected to
external electrodes. The superconductor is represented by the single-site effective Nambu
Green’s function [27]

ĝR,A(ω) = g(ω ± iη)Î + f (ω ± iη)σ̂ x

with

g(ω) = −πρNω/
√
�2 − ω2 f (ω) = πρN�/

√
�2 − ω2

and whereρN , having the dimension of an inverse energy, is the normal-state density of states, Î
is the 2×2 identity matrix, and σ̂ x is a Pauli matrix. We assume thatN ferromagnetic electrodes
are in contact with the superconductor (see figure 1(a)), with a hopping Hamiltonian

W =
N∑
k=1

tx,αk
[
c+
αk
cx + c+

xcαk
]
.

The electrode k having a spin polarization Pk = (ρk,↑ − ρk,↓)/(ρk,↑ + ρk,↓) is represented by
the Green’s function ĝA,Rk = ±iπ [ρk,↑(Î + σ̂ z)/2 + ρk,↓(Î − σ̂ z)/2]. We use a perturbation
theory based on the tunnel amplitude W , which we sum up to infinite order [27, 28]. The
Dyson equation takes the form

ĜR,A
x,x =

[
Î −

N∑
k=1

ĝR,Ax,x t̂x,αk ĝ
R,A
αk,αk

t̂αk,x

]−1

ĝR,Ax,x (1)
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Figure 1. A schematic representation of the models. (a) The model with a coupling of the
superconducting site x to N ferromagnetic electrodes. (b) The model with a coupling to two
ferromagnetic electrodes.

where t̂αk,x is the Nambu representation of the tunnel matrix element: t̂αk,x = tαk,x σ̂
z. The

relevant parameters appear to be the spectral linewidth associated with spin-σ electrons:

�σ =
N∑
k=1

�k,σ with �k,σ = (tαk,x)
2ρk,σ .

Solving equation (1) leads to

ĜA
x,x = 1

D

{
gÎ + f σ̂ x + iπ(f 2 − g2)

[
�↓
2
(Î + σ̂ z) +

�↑
2
(Î − σ̂ z)

]}
(2)

with

D = 1 − iπg(�↑ + �↓) + π2(f 2 − g2)�↑�↓.

To calculate the superconducting order parameter, we need to solve the Dyson–Keldysh
equation

Ĝ+− = (Î + ĜR ⊗ Ŵ )⊗ ĝ+− ⊗ (Î + Ŵ ⊗ ĜA)

where the convolution includes a sum over the labels x and αk .
Noting that Xσ = (1 − iπg�−σ )/D, Yσ = iπf�σ/D, and using equation (2), we obtain

the exact expression for the Nambu component of the Keldysh Green’s function:[
G+−
x,x

]
2,1

= 2iπnF (ω)

{
ρg(X↑Y ↑ + Y↓X↓) + ρf (X↑X↓ + Y↓Y ↑)

+
1

π2�↓ Y
↓
(X↑ − 1) +

1

π2�↑ Y
↑(X

↓ − 1)

}
(3)

where nF (ω) is the Fermi distribution, and we used the notation ρ̂ = ρgÎ +ρf σ̂ x = Im[ĝA]/π .
The superconducting gap is obtained by imposing the self-consistent equation [29]

� = U

∫ +∞

−∞
[dω/(2iπ)][Ĝ+−(ω)]2,1

with U the microscopic attractive interaction. The dominant contribution arises from the
large-|ω| behaviour and we obtain a BCS-type relation:

� = D exp

[
− 1

ρNU
(1 + πρN�↑)(1 + πρN�↓)

]
(4)
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with D the bandwidth of the superconductor. As an example, we consider a coupling to
two ferromagnets. With a parallel alignment of the magnetization in the electrodes, we have
�↑ = 2γ and �↓ = 0. With an antiparallel alignment, we have �↑ = �↓ = γ . The ratio of
the two gaps is found to be

�AP

�P

= exp

(
−π

2ρNγ
2

U

)
(5)

which shows that the spin-polarized environment generates a reduction of the superconducting
gap that depends explicitly on the spin orientation of the environment. The transition
temperature of the superconductor is larger if the electrodes are in an antiparallel alignment.
This behaviour should be contrasted with another model proposed recently [30].

As we show now, the gap variation equation (5) arises from the possibility that
superconducting pairs can delocalize in the ferromagnetic electrodes having opposite spin
orientations. Let us consider the problem with two electrodes only. The two electrodes are
labelled by the Greek indices α1 = α and α2 = β. We use equation (3) to calculate exactly
the crossed Keldysh Green’s functions:[

G+−
α,β

]
2,1

= i〈c+
β,↑c

+
α,↓〉 = π2tαtβρα,↓ρβ,↑

[
G+−
x,x

]
2,1

(6)[
G+−
α,β

]
1,2

= i〈cβ,↓cα,↑〉 = π2tαtβρα,↑ρβ,↓
[
G+−
x,x

]
1,2

(7)

with [Ĝ+−
x,x]2,1 = [Ĝ+−

x,x]1,2 given by equation (3). The density-of-states prefactors in
equations (6), (7) appear to be a direct consequence of the Pauli exclusion principle. To
show this, we consider equations (6), (7) in the limit of fully polarized ferromagnets. In the
parallel alignment (ρα,↑ = ρβ,↑ = 1, ρα,↓ = ρβ,↓ = 0), all pair correlations are vanishing:
〈c+
β,↑c

+
α,↓〉 = 〈cβ,↓cα,↑〉 = 0. This is fully expected because one cannot add or destroy a

spin-down electron in the presence of a spin-up band only. For the same reason, one has
〈c+
β,↑c

+
α,↓〉 = 0 in the antiparallel alignment (ρα,↑ = ρβ,↓ = 1, ρα,↓ = ρβ,↑ = 0). The

remaining non-vanishing cross-correlations are 〈cβ,↓cα,↑〉 and 〈c+
β,↓c

+
α,↑〉. This shows the

possibility of generating superconducting cross-correlations in two ferromagnets with opposite
magnetizations. To characterize the propagation of cross-correlations, we calculate the Gorkov
function Ĝ+−

i,j , with i and j two sites in the ferromagnetic electrodesα andβ such that xi = −xj .
Assuming that the ferromagnetic electrodes behave like a three-dimensional metal, we find[

Ĝ+−
i,j

]
1,2

∼ 1

|xi |π
2tαtβρα,↑ρβ,↓

[
Ĝ+−
x,x

]
1,2
.

By comparison, there is a density-of-states prefactor ρα,↑ρα,↓ in the local superconducting
correlation in electrode α. As a consequence, in strongly spin-polarized ferromagnets,
superconducting cross-correlations can propagate while ordinary superconducting correlations
cannot propagate. It is well known that there is an oscillation-induced order parameter
associated with Cooper pair penetration in partially spin-polarized ferromagnets [2–6]. There
are no such oscillations in the case of cross-correlations because Cooper pairs do not acquire
a centre-of-mass momentum when entering the ferromagnetic electrodes.

The model can be considered from the point of view of propagation of cross-correlated
Cooper pairs along domain walls in a multi-domain ferromagnet. Such cross-correlations
can generate an enhancement of the ferromagnetic–superconducting proximity effect, which
does not contradict the results of recent experiments on ferromagnet/superconductor hetero-
structures [13–15]. Another proposal based on spin accumulation has been made recently [16],
but appears to be incompatible with some experiments [14]. Our scenario and the spin-
accumulation picture both contribute to the same effect, but in a different situation: cross-
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correlations can propagate only in multi-domain ferromagnets, while the spin-accumulation
mechanism is valid even with single-domain ferromagnets.

Now we show that superconducting cross-correlations can be used to produce correlated
pairs of electrons. Let us consider two ferromagnets α and β in contact with a superconductor.
The cross-correlated degrees of freedom are represented by the Cooper pair-like wave function
|ψ〉 = [u0 + v0c

+
α,↑c

+
β,↓]|0〉, with u0 and v0 the BCS coherence factors. Let us consider two

additional ferromagnetic electrodes α′ and β ′ having spin orientations )α′ and )β ′ connected
to the electrodes α and β (see figure 2). The electrodes α′ and β ′ are considered to be
reservoirs in which all inelastic processes take place. For the sake of obtaining the basic
physics of such systems, we restrict ourselves to fully polarized ferromagnets and high-
transparency contacts [31]. If )α′ = ↑, )β ′ = ↓, the correlated pair can be transmitted into
the reservoirs α′ and β ′ and a finite current is flowing into the superconductor (see figure 2(a)).
If )α′ = )β ′ = ↓, the spin-up electron making the correlated state is backscattered at the
interface with the spin-down ferromagnet α′. Coming back onto the superconductor interface
it undergoes a crossed Andreev reflection [9] in which a Cooper is formed in the super-
conductor and a spin-down hole is transferred into electrode β. The whole process does not
carry electrical charge: there is no current transmitted into the superconductor (see figure 2(b)).
The ‘quantum switch’ device in figure 2 can therefore be used to produce and detect correlated
pairs of electrons by means of dc transport.

S

α β
β’’α

S β’
α β

α’(b)

(a)

I=0

I=0

Figure 2. A schematic representation of the quantum switch used to probe correlated pairs of
electrons. A current source is connected to the superconductor. In (a), there is a finite current
flowing. In (b), there is no current flowing.

Now we discuss the production of linear superpositions in a three-terminal device (see
figure 3). The three ferromagnetic electrodes are labelled by the indices α1 = α, α2 = β,
and α3 = γ . With fully polarized ferromagnets having a spin orientation σα = σβ = ↑,
σγ = ↓, the exact form of the cross-correlations is given by [Ĝ+−

α(β),γ ]1,2 = π2tα(β)tγ [Ĝ+−
x,x]1,2.

This means that Cooper pairs can delocalize over several electrodes. The corresponding wave
function is a linear superposition of Cooper pairs

|ψ〉 = λα[u0 + v0c
+
α,↑c

+
γ,↓]|0〉 + λβ[u0 + v0c

+
β,↑c

+
γ,↓]|0〉.

The coefficients λα and λβ are such that the Cooper pair wave function contains the same pair
correlations as the Gorkov function:

〈c+
β,↑c

+
γ↓〉/〈c+

α,↑c
+
γ↓〉 = λβ/λα = tβ/tα

from which we deduce

λα(β) = tα(β)
/√

t2α + t2β + 2u2
0tαtβ .
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Sα’(b)
γ

α

β

β’

γ’

β

α
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’

1

0

1

1

I

Figure 3. A schematic representation of the three-terminal device used to probe the linear super-
position of Cooper pairs. The inset shows the presence/absence of a current flowing into the
superconductor as a function of the spin orientation in the ferromagnetic reservoirs.

As a direct consequence of the linear superposition, the current flowing into the superconductor
is vanishing if )α′ = )β ′ = ↓ and finite in the three other spin orientations (see figure 3).
Now the linear superposition associated with the magnetization of the electrodes σα = ↑,
σβ = σγ = ↓ is

|ψ〉 = λ′
β[u0 + v0c

+
α,↑c

+
β,↓]|0〉 + λ′

γ [u0 + v0c
+
α,↑c

+
γ,↓]|0〉

with

λ′
β(γ ) = tβ(γ )

/√
t2β + t2γ + 2u2

0tβ tγ .

The current flowing into the superconductor is vanishing in the two spin orientations)α′ = ↓,
)β ′ = ↑,↓ and finite otherwise. Therefore, a dc-current measurement can make the distinction
between the linear superpositions associated with the spin orientations σα = σβ = ↑, σγ = ↓
and σα = ↑, σβ = σγ = ↓.

To conclude, we have shown that quasi-long-range superconducting cross-correlations
can propagate in ferromagnets having opposite spin orientations. The superconducting cross-
correlations are much stronger than the local ones. Such cross-correlations can propagate
along ferromagnetic domain walls, and contribute to an enhancement of the ferromagnetic
proximity effect, which may be present in recent experiments [13–15]. The superconducting
gap depends explicitly on the spin orientation of the ferromagnetic electrodes, which could
be used as an experimental probe of superconducting cross-correlations. We have shown that
cross-correlations can be used to produce correlated pairs of electrons and linear superpositions
of correlated pairs. Such states can in principle be detected by means of dc transport. The
microscopic calculation of the current will be the subject of future work.

Acknowledgments

The author acknowledges invaluable discussions with P Degiovanni, D Feinberg and M Giroud.

References

[1] Anderson P and Suhl H 1959 Phys. Rev. 116 6739
[2] Buzdin A and Bulaevskii L 1988 JETP 67 576



Superconducting cross-correlations in ferromagnets: implications for thermodynamics and quantum transport 6451

[3] Fulde P and Ferrel A 1964 Phys. Rev. 135 A550
[4] Larkin A and Ovchinnikov Y 1965 Sov. Phys.–JETP 20 762
[5] Clogston M A 1962 Phys. Rev. Lett. 9 266
[6] Demler E A, Arnold G B and Beasley M R 1997 Phys. Rev. B 55 15 174
[7] Ryazanov V V et al 2000 Preprint cond-mat/0008364
[8] Kontos T, Aprili M, Lesueur J and Grison X 2000 Preprint cond-mat/0009192
[9] Deutscher G and Feinberg D 2000 Appl. Phys. Lett. 76 487

[10] de Jong M J M and Beenakker C W J 1995 Phys. Rev. Lett. 74 1657
[11] Soulen R J et al 1998 Science 282 85
[12] Upadhyay S K et al 1998 Phys. Rev. Lett. 81 3247
[13] Giroud M et al 1998 Phys. Rev. B 58 R11 872
[14] Petrashov V T, Sosnin I A and Troadec C 2000 Preprint cond-mat/0007278
[15] Aumentado J and Chandrasekhar V 2000 Preprint cond-mat/0007433
[16] Belzig W, Brataas A, Nazarov Yu V and Bauer G E 2000 Preprint cond-mat/0005188
[17] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[18] Bell J S 1965 Physics 1 195
[19] Aspect A, Grangier P and Roger G 1981 Phys. Rev. Lett. 47 460

Aspect A, Dalibard J and Roger G 1982 Phys. Rev. Lett. 49 1904
[20] Kwiat P G et al 1995 Phys. Rev. Lett. 75 4337
[21] Schor P W 1994 Proc. 35th Symp. on the Foundations of Computer Science (New York: IEEE Computer Society

Press) p 124
[22] Grover L K 1997 Phys. Rev. Lett. 79 325
[23] Steane A 1998 Rep. Prog. Phys. 61 117
[24] Nakamura Y, Pashkin Yu A and Tsai J S 1999 Nature 398 786
[25] Loss D and Sukhorukov E V 2000 Phys. Rev. Lett. 84 1035
[26] Lesovik G B, Martin T and Blatter G 2000 Preprint cond-mat/0009193
[27] Cuevas J C, Martin-Rodero A and Levy Yeyati A 1996 Phys. Rev. B 54 7366
[28] Caroli C, Combescot R, Nozières P and Saint-James D 1972 J. Phys. C: Solid State Phys. 5 21
[29] Martin-Rodero A, Garcia-Vidal F J and Levy-Yeyati A 1994 Phys. Rev. Lett. 72 554
[30] Baladie I, Buzdin A, Ryzhanova N and Vedyayev A 2001 Phys. Rev. B 63 054518
[31] The Keldysh formalism can be used to calculate the current–voltage characteristics in the presence of arbitrary

spin polarizations and contact transparencies;
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